Rekha V.V.I. Questions for 2022 Examination

Answer of below mentioned V.V.I. questions are present in your Rekha Guess Paper Part-III Physics-5

SHORT ANSWER TYPE QUESTIONS

1.	What do you mean by holonomic and non-holonomic		
	constraints ? Give example. V. V. I.	•••••	7
2.	Discuss the generalised co-ordinates. V. V. I.	•••••	7
3.	State and explain D' Alembert's principle. V. V. I.		8
4.	Explain generalised momentum.		9
5.	Show that generalised momentum conjugate to a cyclic		
	co-ordinate is conserved.		11
6.	What is Hamiltonian? Give its physical significance. V. V. I.	•••••	12
7.	Explain Inertial and Non-inertial frame of references. V. V. I.	•••••	13
8.	State and explain Galelian invariance.	•••••	14
9.	What is principle of virtual work ? Explain.	•••••	15
10.	What is photoelectric emission effect ? What are the laws of		
	photoelectric emission effect ? How did Einstein explain		
	these laws ?	•••••	16
11.	On the basis of uncertainty principle show that electrons can		
	not exist inside the nucleus. V. V. I.	•••••	17
12.	Explain the inadequacies of classical mechanics.	•••••	17
13.	Give postulates of quantum mechanics.	•••••	18
14.	What is zero point energy of a harmonic oscillator ?	•••••	19
15.	Write about the different properties of wave function.	•••••	19
16.	Mention the physical significance of the wave function ψ .	•••••	20
17.	Explain and obtain expression for probability density.	•••••	22
18.	Find the relation between Probability & Entropy.		
	Or, Write a note on Entropy and Probability.	•••••	23
19.	Give postulates of statistical mechanics. V. V. I.		
	Or, What are the fundamental assumptions of statistical		
	mechanics ?	•••••	25
20.	Write down the probability theory of statistical		
	thermodynamics.		
	Or, Explain thermodynamical probability. V. V. I.	•••••	25
21.	Discuss the law of equipartition of energy.	•••••	26
	Obtain Stefan Boltzmann law of black body radiation.	•••••	28
23.	Differentiate between FD, BE and classical statistics. V. V. I.	•••••	29
====	REKHA GUESS PAPER	=====	===

Group–A Classical and Quantum Mechanics

1.	Derive Lagrange's equation of motion for particle under the		
	action of conservative forces.	•••••	30
2.	Explain one application of Lagrange's equation.	•••••	35
3.	Deduce conservation theorem for generalised momentum and		
	linear momentum.		38
4.	Derive Hamilton's equations of motion for a system of		
	particles. Use it to obtain the equation of motion for a simple		
	pendulum. V. V. I.	•••••	40
5.	Explain Hamilton's principle and use it to deduce Hamilton's		
	equation for a holonomic conservative system. V. V. I.	•••••	43
6.	State three Kepler's law of planetary motion and obtain them		
	theoretically.		
	Or , What is central force ? State and deduce Kepler's law of		
	planetary motion.		
	Or, State and prove Kepler's law of planetary motion. How		
	does the weight of a body change in the route from the earth		
	to the moon ?		46
7.	Explain coriolis and centrifugal forces. Mention their simple		
	applications and obtain an explicit expression for each of		
	them. V. V. I.		49
8.	Explain Frank-Hertz experiment. Show how critical		
	potentials are determined.		52
9.	What do you understand by wave-particle duality ?		
	Derive the de-Broglie relation and give its experimental		
	verification. V. V. I.		54
10.	What do you mean by group and phase velocities ? Establish		
	relation between them.		59
11.	State and prove Heisenberg's uncertainty principle and give		
	one of its application.		61
12.	Derive expression for wave function and energy for a particle		
	in three dimensional box.		
	Or, Give steady-state form of the Schrodinger's equation for		
	a particle in a three-dimensional rigid box. Solve this equation		
	to obtain the energy eigenvalues and eigenfunctions of the		
	particle.		65

======== +90% EXAM. QUESTIONS COMES FROM REKHA EXAMINATION GUIDE =========

67

72

76

79

.....

.....

.....

- 13. Deduce Schrodinger's time independent and time dependent equation for matter wave. Explain the physical significance of wave function (ψ). V. V. I.
- 14. Establish Schrodinger's equation for a linear harmonic oscillator and solve it to obtain eigen values and eigen functions.
- 15. Write down Schrodinger's equation for hydrogen atom and solve its radial part only.
- 16. The potential function for a particle moving along positive x-axis is represented as

$$V(x) = 0, \text{ for } x < 0$$
$$= V, \text{ for } x > 0$$

Calculate the transmittance and reflectance at the potential discontinuity.

Or, Explain the theory of potential step for a potential function which is discontinuous at a point on *x*-axis.

Group-B Statistical Physics

1.	What are the fundamental assumptions of statistical mechanics ? State and prove Boltzmann's theorem connecting entropy and probability. V. V. I.		87
2.	Derive Maxwell-Boltzmann's law of distribution and discuss	•••••	8/
2.	briefly its experimental verification.		88
3.	What do you mean by partition function ? Express entropy and Helmholtz free energy in terms of partition function.	•••••	00
	Or, Express entropy, total energy, Gibbs free energy,		
	Helmholtz free energy, enthalpy, pressure, specific heat at		
	constant volume in terms of partition function.		94
4.	Define micro-canonical ensemble. Use it to obtain the entropy		
	and internal energy of a perfect gas. V. V. I.		
	Or, Discuss entropy of a perfect gas using classical		
	microcanonical ensemble. What is Sackur-Tetrode equation ?	•••••	98
5.	What do you mean by Gibb's paradox in connection with the		
	entropy of a perfect gas? How was it resolved?		
	Or, Write a note on Gibb's paradox.		102
6.	Derive Rayleigh-Jeans law of radiation and point out its		
	limitations.		104

7. 8.	 State and prove Stefan-Boltzmann's law of black-body radiation. How can the law be experimentally verified ? Or, On the basis of thermodynamic considerations explain Stefan- Boltzmann law of radiation. V. V. I. What is black body radiation ? Obtain Planck's radiation formula for black body radiation. Or, Derive Planck's radiation formula using Bose-Einstein Statistics. Differentiate between Bose-Einstein and Fermi- 		108
	Dirac Statistics.	•••••	111
9.	Give an account of Bose-Einstein distribution law and discuss its application to liquid helium II.	•••••	115
10.	Derive Fermi-Dirac distribution formula. Discuss one application for its distribution.		
	Or, Derive Fermi-Dirac distribution law (statistics) for		
	indistinguishable particles. V. V. I.	•••••	119
11.	Show the essential requirements of Fermi-Dirac statistics. Considering a Fermi gas, deduce an expression for energy		
	distribution function for the electron gas.	•••••	123
12.	Write short notes on the following :		
	(a) Partition Function	•••••	125
	(b) Differentiate various types of ensembles	•••••	125
	(c) Wien's Distribution Law	•••••	126
	(d) Fermi Energy	•••••	127
	(e) Planck's Quantum Postulates	•••••	127
	(f) Negative Temperatures	•••••	128

PHYSICS - 5 (Hons.) (2021)

1.	Answ	er any four questions of the following.		
	(a)	Discuss the principle of virtual work.	•••••	15
		Explain Fictitious or Pseudo force.		
		Define group and phase velocity. Obtain the relation		
		between them.	•••••	59
		Define Eigen values and Eigen functions.		
		Find the relation between entropy and probability.	•••••	23
	(f)	Obtain Stefan- Boltzmann law of black body radiation. GROUP-A	•••••	28
2.	State a	and prove Heisenberg's uncertainty principle and give		
		its application.		61
3.		lish Schrodinger's equation for a linear harmonic		
		ator and solve it to obtain Eigen values and Eigen		
	functi			72
4.	What	are generalized co-ordinates ? Obtain Lagrange's		
	equati	ons of motion for a conservative system in a generalised		
	co-ord	linates.		
5.		hree Kepler's laws of planetary motion and obtain them		
	theore	tically.	•••••	46
		GROUP-B		
6.		is black body radiation? Obtain Planck's radiation formula		
_		ick body radiation.	•••••	111
7.		do you mean by partition function ? Express entropy		94
0		elmholtz free energy in terms of partition function.	•••••	94
8.		e Fermi Dirac distribution law and obtain the expression	119	123
0		e specific heat of a degenerate and electron gas.		
9.	Deduc	ce B-E- distribution law and give one of its application.	•••••	115
		PHYSICS - 5 (Hons.) (2020)		
	fror	er five questions, selecting at least two questions n each Group, in which Q. No. 1 is compulsory.		
1.		er any four questions of the following:		
		hat do you mean by holonomic and non-holonomic nstraints?		7
		plain Inertial and Non-Inertial frame of references.		13
		ate and explain D'Alembert's principle.		8
		Trite down the probability theorems of statistical		
		ermodynamics.		25
		hat do you mean by wave particle duality ?	•••••	54
		nat is principle of virtual work? Explain.	•••••	15

Group-A

2.	Deduce Schrodinger's time independent and time dependent		
	equations for matter wave. Explain the physical significance		
	of wave function?		67
3.	Explain coriolis and centrifugal forces. Mention their simple		
	applications and obtain an explicit expression for each of		
	them.		49
4.	Explain Hamilton's principle and use it to deduce Hamilton's		
	equation for a holonomic conservative system.		43
5.	What do you mean by Group and Phase velocities ? Establish		
	relation between them.		59
	Group-B		
6.	What are the fundamental assumptions of statistical		
	mechanics? State and prove Boltzmann's theorem connecting		
	entropy and probability.		87
7.	Show the essential requirements of Fermi Dirac Statistics.		
	Considering the free electron in a metal to form a Fermi gas,		
	deduce an expression for energy distribution function for the		
	electron gas.		123
8.	Give an account of B. E. distribution law and discuss its		
	application to liquid Helium II.		115
9.	State and prove Stefan-Boltzmann law. Describe how the law		
	can be verified experimentally.	•••••	108
	DUVETCE E (Hone) (2010)		

PHYSICS - 5 (Hons.) (2019)

Answer five questions, selecting two questions from each Group, in which Q. No. 1 is compulsory.

1.	Answer any four questions of the following		
	(a) Discuss the generalised co-ordinates.	•••••	7
	(b) What is Hamiltonian? Give its physical significance.		12
	(c) Mention the physical significance of the wave function.		20
	(d) What are the fundamental postulates of statistical		
	mechanics?	•••••	25
	(e) On the basis of uncertainty principle show that electrons		
	can not exist inside the nucleus.	•••••	17
	(f) Distinguish between BE, FD and classical statistics.	•••••	29
	Group-A		
2.	What do you understand by wave-particle duality ? Derive		
	the de-Broglie relation and give its experimental verification.	•••••	54
3.	Derive Lagrange's equation of motion for particle under the		
	action of conservative forces.	•••••	30

======== +90% EXAM. QUESTIONS COMES FROM REKHA EXAMINATION GUIDE ========= Deduce Mosley's law and show how it has been utilized in 4 removing some of the defects of periodic table. Write short notes on any two of the following : 5. (a) Spin orbit interaction (b) Characteristic X-ray spectra (c) Zeeman effect (d) Lande's g-factor Group - B Define micro-canonical ensemble. Use it to obtain the entropy 6. and internal energy of a perfect gas. 98 Discuss with suitable schematic diagrams, the construction 7. and the working of a Ruby laser. What is black body radiation? Obtain Planck's radiation formula 8. for black body radiation. 111 Write notes on any two of the following: 9. (a) Application of Raman Effect (b) Entropy and Probability

(c) Stefan-Boltzmann Law (d) Gibb's Paradox

Rekha V.V.I. Questions for 2022 Examination

Answer of below mentioned V.V.I. questions are present in your Rekha Guess Paper Part-III Physics-6

Short Questions with Answers

1.	Give the basic properties of nucleus.		7
2.	Explain the term packing fraction and binding energy of a		
	nucleus.	•••••	8
3.	Write a short note on Electric Quadrupole Moment.	•••••	8
4.	What radiation do we get from radioactive substances ?		
	Mention their nature and properties. V. V. I.		9
5.	Define average life of radioactive nuclei. Derive relation		
	between mean life and radioactive constant.		10
6.	Discuss the Q-value of nuclear reaction. V. V. I.	•••••	11
7.	Explain fission and fusion reaction. V. V. I.	•••••	12
8.	Distinguish between cyclotron and synchrocyclotron.	•••••	13
9.	What do you mean by primary and secondary cosmic rays ? V. V. I.		14
10.	Distinguish between amorphous and crystalline solids. V. V. I.	•••••	14
11.	What are miller indices ? How orientation of a plane is		
	specified by miller indices ? V. V. I.	•••••	15
12.	What is a reciprocal lattice? Mention some of its important		
	properties.		16
13.	What do you mean by Brillouin zones ? V. V. I.		17
14.	State and prove Bragg's law of X-ray diffraction.		18
15.	Give an outline of the free electron theory of metals.		18
16.	Distinguish between metals, insulators & semiconductors. V.V.I.		19
17.	Distinguish between Dia, Para, Ferro and Ferri magnetic		
	materials.		20
18.			20
			-0
	Group–A Nuclear Physics and Cosmic Ray		
	I INUCIEAR PRIVILICS AND LOSMIC RAV		

 Explain the term 'Mass defect' and 'Packing Fraction'. Obtain Weizsacker's semi empirical formula. V. V. I.
 Or, State Weizsacker semi-empirical mass formula. Discuss the physical meaning of each term involved in this formula.

	OU // EXAM. QUED HOND COMED THOM HERITA EXAMINATION CODE		
2.	Describe the construction, theory and working of Aston's		
	mass spectrograph. How it has been used to detect isotopes?		25
3.	What is radioactivity ? State the laws of radioactive		
	disintegration and deduce them. Define half life and mean		
	life in radioactivity.		28
4.	Describe the range of α -particles.		31
5.	Explain Geiger-Nuttall law.		34
6.	Describe the Gamow's theory of α -decay.		36
7.	Describe the construction, principle and working of an		
	ionization chamber. Explain the difference between the		
	ionization chamber and G.M. counter.	•••••	39
8.	Describe a G.M. counter and explain its working. Draw a typical		
	characteristic curve for a G.M. tube and discuss its shape. V. V. I.		40
9.	Describe the principle, construction and working of a cloud		
	chamber. Also explain its uses and limitations.		42
10.	What is a nuclear reaction ? Define Q-value of nuclear		
	reaction. Derive an expression for the Q-value of reaction in		
	terms of kinetic energy of incident and product particles. V. V. I.		45
11.	Describe the principle, construction and working of a		
	cyclotron. Discuss its limitations.		46
12.	What is a Betatron ? Describe the principle, construction and		
	working of it. V. V. I.		
	Or, Explain the principle of working and the construction of		
	a Betatron. Derive the condition for its operation. How is it		
	achieved ?		50
13.	What are primary and secondary cosmic rays ? Explain the		
	latitude effect and East-West asymmetry in cosmic ray		
	intensity. V. V. I.	•••••	54
14.	What are cosmic ray showers ? Explain the cascade theory of		
	origin of cosmic rays. V. V. I.	•••••	56
15.	Write short notes on the following :		
	(a) Electric Quadrupole Moment	•••••	58
	(b) Semi-empirical Mass Formula	•••••	59
	(c) α-decay	•••••	60
	(d) α -particle spectra	•••••	61
	(e) Nuclear Fission	•••••	61
	(f) Nuclear Cross Section	•••••	61

====	===== +90% EXAM. QUESTIONS COMES FROM REKHA EXAMINATION G	UIDE ======	===
	(g) Photographic Emulsions		62
	(h) Theory of formation of Compound Nucleus	•••••	62
	(i) Direct Nuclear Reaction	•••••	63
	(j) Cosmic Rays	•••••	64
	(k) Classification of Elementary Particles	•••••	64
	(1) Conservation Laws	•••••	65

Group–B Condensed Matter Physics

1.	What are ionic crystals ? Derive an expression for lattice energy of ionic crystals from Born's theory. V. V. I.		67
2		•••••	07
2.	What are Bravais Lattice or Crystal Lattice ? Explain all		
	crystal lattice with suitable diagram.		
	Or, What is a Lattice ? Describe various types of lattices and		
	mention their distinguishing features.	•••••	70
3.	What is a Reciprocal Lattice ? Show that the bcc lattice is		
	the reciprocal of the fcc lattice. V. V. I.		73
4.	Give an account of different types of bonding in a		
	crystal.		
	Or , Discuss ionic, metallic, covalent, hydrogen and vander		
	waal bonding in brief.		76
5.	Derive de-Broglie relation between particle moment p and		
	wavelength λ of the de-Broglie waves. Also give the		
	experimental verification of this relation.		78
6.	Derive Laue's equation of diffraction of X-rays and obtain		
	Bragg's diffraction condition from them.		
	Or, What is Bragg's law ? Deduce the Laue's equation of		
	diffraction of X-rays by a crystal. Show how Bragg's law		
	follows from that equation.		80
7.	State and explain the terms electrical and thermal		
	conductivities of metal and establish Wiedemann-Franz		
	relation between them. V. V. I.		85
8.	Define electrical conductivity. Develop Sommerfeld theory		
	of electrical conductivity through metals.		86
9.	Distinguish between intrinsic and extrinsic semiconductor.		
	Derive expression for electron concentration in an intrinsic		
	semiconductor. V. V. I.		91

10.	State and prove Bloch theorem in reference to periodicity		
	character of potential in a crystal.		
	Or, What is Bloch theorem ? Deduce Bloch theorem and		
	discuss its results.	•••••	95
11.	What is Hall Effect ? Obtain an expression for Hall co-efficient		
	and its experimental determination.		
	Or, What is Hall Effect ? Derive different parameters		
	associated with it. V. V. I.		96
12.	Mention main features of ferromagnetic substances. Discuss		
	the Weiss theory of ferromagnetism. V. V. I.		99
13.	Explain the three magnetic vectors and establish a relation		
	between them.		103
14.	Write short notes on the following :		
	(a) Unit Cell		105
	(b) Reciprocal Lattice	•••••	105
	(c) Miller Indices		106
	(d) Brillouin Zones		106
	(e) Wiedemann-Franz Law		107
	(f) Rigid Rotor		107
	(g) Hermitian Operators		108
	(h) Hall Effect		108
	(i) Langevin's Theory of Paramagnetism		
	Or, Classical Theory of Paramagnetism	•••••	108
	(j) Magnetic Hysteresis	•••••	109
	(k) Energy Loss due to Hysteresis	•••••	110

PHYSICS - 6 (Hons.) (2021)

1.	Ansv	ver any four of the following questions :		
	(a)	Give the basic properties of the nucleus.		7
	(b)	Distinguish between Para, Dia and Ferromagnetic		
		materials.		20
	(c)	Give the outline of free electron theory of metal.		18
	(d)	What is reciprocal lattice? Mention some of its important		
		properties.		16
	(e)	Explain the term Packing Fraction and Binding energy		
		of a nucleus.		8
	(f)	Write short notes on Electric quadrupole moment.		8
		GROUP-A		
2.	Desc	ribe the Gamow's theory of α -decay.		36
3.	What	t is radioactivity? State the lame of radioactive disintegration		
	and c	leduce them. Define half life and mean life in radioactivity.		28
4.	Desc	ribe the construction, theory and working of Aston's mass		
	Spec	trograph. How it has been used to detect isotopes.		25
5.		ribe the principle, construction and working of a cyclotron.		
	Disc	uss its limitations.		46
		GROUP-B		
6.		ve Laue's equation of diffraction of X-rays and obtain		
		g's diffraction condition from them.	•••••	80
7.		and prove Bloch theorem in reference to periodicity		
		acter of potential in crystal.	•••••	95
8.		ne electrical conductivity. Develop Sommerfield theory of		
	electrical conductivity through metals.			86
9.		e notes on any two of the following :		
	(a)	Miller Indices.		116
	(b)	Brillouin zones.		106
	(c)	Magnetic Hysteresis.		109
	(d)	Classical theory of paramagnetism.	•••••	108
		PHYSICS - 6 (Hons.) (2020)		
	Ansv	wer five questions, selecting at least two questions		
		om each Group, in which Q. No. 1 is compulsory.		
1.		ver any four questions of the following:		
		Vhat do you mean by Primary and Secondary Cosmic rays?		14
		xplain Fission and Fusion reaction.		12
		istinguish between Metal, Insulator and Semiconductor.	•••••	19
	. ,	biscuss the B-H curve of Steel and Soft Iron.	•••••	20
		vistinguish between Amorphous and Crystalline Materials.	•••••	14
	(f) W	hat do you mean by Brillouin Zones?		17

======== +90% EXAM. QUESTIONS COMES FROM REKHA EXAMINATION GUIDE =========

Group-A

2.	State Weizsacker Semi-empirical mass formula. Discuss the physical meaning of each term involved in this formula.		22
3.	What is a Betatron? Describe the principle, construction and working of it.		50
4.	Describe a G. M. counter and explain its working. Draw a	•••••	50
	typical characteristic curve for a G. M. tube and discuss its shape.		40
5.	What are cosmic ray showers? Explain the Cascade theory of		
-	origin of cosmic rays.		56
	Group - B		
6.	State and explain the terms thermal and electrical		
	conductivities of metal and establish Wiedmann - Franz		
	relation between them.		85
7.	What is Hall effect? Obtain an expression for Hall Co-efficient		
	and its experimental determination.	•••••	96
8.	What is a reciprocal lattice? Show that the bcc lattice is the		
	reciprocal of the fcc lattice.	•••••	73
9.	Mention main features of ferro-magnetic substances. Discuss		
	the Weiss theory of Ferromagnetism.	•••••	99
	PHYSICS - 6 (Hons.) (2019)		
1.	Answer any four of the following questions:		
	(a) Discuss the Q-value of nuclear reaction.		11
	(b) Explain the term Packing Fraction and Binding Energy of nucleus.		8
	(c) What radiations do we get from radioactive substance ?		
	Mention their nature and properties.	•••••	9
	(d) Distinguish between Para, Dia and Ferromagnetic materials.	•••••	20
	(e) Give the outlines of free electron theory of metal.	•••••	18
	(f) What are Miller Indices? How orientation of a plane is specified		
	by Miller Indices ?	•••••	15
•	Group-A		26
2.	Describe the Gramow's theory of α -decay.	•••••	36
3.	What is radioactivity? State the laws of radioactive disintegration		10
4	and deduce them. Define half life and mean life in radioactivity.	•••••	28
4.	Describe the construction, principle and working of an ionization chamber. Explain the difference between the ionization		
	chamber and G M. Counter.		39
5.	Write short notes on any two of the following:	•••••	5)
5.	(a) Semi-empirical mass formula		59
	(b) Nuclear fussion		12
	(c) Electric quadrupole moment		58
	(d) Cosmic rays		64

Group - B

6.	Define electrical conductivity. Develop Sommerfield theory of	
	electrical conductivity through metals.	 86
7.	State and prove Bloch theorem in reference to periodicity	
	character of potential in crystal.	 95
8.	Derive de-Broglie relation between particle moment p and	
	wavelength λ of the de-Broglie waves. Also give the	
	experimental verification of this relation.	 78
9.	Write short notes on any two of the following:	
	(a) Hermitian operators	 108
	(b) Rigid rotator	 107
	(c) Reciprocal lattice	 105
	(d) Hall effect	 108

Rekha V.V.I. Questions for 2022 Examination

Answer of below mentioned V.V.I. questions are present in your Rekha Guess Paper Part-III Physics-7

Short Questions with Answers

1.	Distinguish the term Isotope and Isobar. V. V. I.		7
2.	Give the outline of vector atom model. V. V. I.		7
3.	Show that the ratio of orbital magnetic moment to angular		
	momentum is $-e/2m$.		9
4.	Explain the term Bohr Magneton and Gyromagnetic ratio.		
	Or, Explain spin magnetic moment of an electron. V. V. I.		10
5.	What is Zeeman effect ? Distinguish between normal and		
	anomalous Zeeman effect. V. V. I.		11
6.	What is Stark effect ? Show that Ist order Stark effect for		
	hydrogen is zero.		11
7.	How symmetric and anti-symmetric wave functions lead to		
	Pauli's exclusion principle ? V. V. I.		12
8.	Compare L-S and J-J coupling schemes.		13
9.	State Bohr's postulates of hydrogen spectra. What are the		
	shortcomings of Bohr's model ? V. V. I.		14
10.	What are the selection rules for <i>j</i> for observing doublet spectra		
	in single electron system ?	•••••	15
11.	Discuss, in brief, the different types of molecular spectra.		15
12.	Mention the different series of alkali spectra. V. V. I.		16
13.	Determine the intermolecular distance (bond length) of CO		
	molecule.		16
14.	What is Raman effect ? Explain its importance.		17
15.	Explain the characteristics of Raman lines.	•••••	18
16.	Explain Stoke and Anti-Stoke's line.		18
17.	Explain metastable state and its importance.	•••••	18
18.	Discuss the spontaneous and stimulated emission.	•••••	19
19.	Explain the phenomena of population inversion and optical		
	pumping. V. V. I.	•••••	20
20.	Mention some important application of Laser. V. V. I.	•••••	21

Group–A Atomic Spectroscopy

1. Describe, with theory J. J. Thomson method for measuring the ratio of charge (e/m) of an electron.

. 22

======================================			
2.	What is meant by thermionic emission ? Derive Richardson-		
	Dushman equation. V. V. I.	•••••	25
3.	State and explain Larmor's Theorem.		
	Or, Explain the determination of spin magnetic moment.	•••••	27
4.	Describe Stern-Gerlach Experiment. Show how it verifies the		
	principle features of vector atom model.	•••••	28
5.	What is Zeeman effect ? Give the theory of anomalous Zeeman		
	effect.		
	Or, What is Zeeman effect ? Discuss briefly about its different		
	types.	•••••	32
6.	Outline the theory of Paschen-Back effect and discuss the		
_	Paschen-Back pattern of 2P–2S transition.	•••••	33
7.	What is Paschen-Back Effect ? Give the theory of this effect		
	and illustrate it by taking the example of energy level		26
0	associated with D-transition sodium. V. V. I.	•••••	36
8.	Deduce Pauli's Exclusion Principle and explain its physical		20
0	significance.	•••••	39
9.	What do you mean by L-S and J-J coupling ? Explain		41
10	comparison between them. V. V. I.	•••••	41
10.	Give an account of Bohr's theory of Hydrogen spectra and		
	deduce the expression for energy of an electron. What are the		43
11	shortcomings of this theory ?	•••••	43
11.	Discuss Bohr's theory of hydrogen spectra. On what basis does the Sommerfeld theory of elliptical orbit differs from		
	Bohr's theory of circular orbit ? V. V. I.		
	Or, Describe Bohr-Sommerfeld theory of hydrogen spectra.		
	Discuss briefly the fine structure of H_a line in hydrogen		
	spectrum. What are the shortcoming of this model ?		47
12	Describe the main features of alkali spectra. How are they	•••••	•
12.	explained ? V. V. I.		52
13.	Write short notes on the following :		
101	(a) Thermionic Emission		55
	(b) Space Quantisation	•••••	56
	(c) Electron spin and Angular Momentum		
	Or, Spin Angular Momentum	•••••	57
	(d) Stern-Gerlach Experiment		57
	(e) Bohr Magneton	•••••	58
	(f) Spin Orbit Coupling	•••••	58
	(g) L-S Coupling		59
	(h) Hund's Rule	•••••	60

======= +90% EXAM. QUESTIONS COMES FROM REKHA EXAMINATION GUIDE =========

(i) Pure Rotational Spectra Or, Infrared Spectra

Group–B Molecular Spectroscopy and Laser

60

.....

1.	Obtain expression for the rotational energy levels of diatomic		
	molecule, considering it as a rigid rotator. Discuss the relevant		
	selection rule. V. V. I.		62
2.	Give the theory of vibrational spectra of diatomic molecules		
	and show that the energy levels are equi-spaced. V. V. I.		66
3.	Outline the theory of rotational-vibrational spectra of		
	diatomic molecules. Discuss the effect of presence of isotopes		
	on the spectra.		68
4.	Discuss the quantum theory of Raman effect. What light does		
	it throw on the structure of molecules ? What are Stokes and		
	Anti-Stokes line ?		
	Or, What is Raman effect ? How is Raman effect explained		
	on the basis of quantum theory ?		70
5.	What are Einstein coefficients ? How are they related with		
	each other ?		
	Or, What are Einstein's A and B coefficients ? Establish		
	relation between them. V. V. I.		72
6.	What do you mean by Laser rate equation ? Using laser rate		
	equation, deduce condition of population inversion in three		
	laser system. V. V. I.	•••••	74
7.	Discuss with suitable diagram the principle, construction and		
	working of Ruby Laser.		77
8.	What is the threshold condition of Ruby Laser ? Deduce an		
	expression of flux density in Ruby Laser.		
	Or, Explain Pumping Power in Ruby Laser.		79
9.	Describe a He-Ne gas laser. How is population inversion		
	achieved in this type of laser ? Mention advantages of gas		
	laser over a solid state laser. V. V. I.		82
10.	Write short notes on the following :		
	(a) Selection Rules	•••••	84
	(b) Population Inversion	•••••	84
	(c) Three Level Laser System	•••••	85
	(d) Four Level Laser System	•••••	86
	(e) He-Ne Laser	•••••	87

PHYSICS - 7 (Hons.) (2021)

1.	Answ	ver any four of the following questions.			
	(a)	What is stark effect? Show that 1 st order stark effect for			
		Hydrogen is zero.		11	
	(b)	Show that ratio of orbital magnetic moment to angular			
		momentum is -e/2m	•••••	9	
	(c)	What are the selection rules for j for observing doublet			
		spectra in single electron system ?	•••••	15	
	(d)	compare L-S and J-J coupling schemes.	•••••	13	
	(e)	Discuss spontaneous emission and stimulated emission.	•••••	19	
	(f)	Explain Metastable states.	•••••	18	
		GROUP-A			
2.		is Zeeman effect? Give the theory of anomalous Zeeman			
	effect		•••••	32	
3.		tibe with theory J.J. Thomson's method of measuring the			
		of charge to mass (e/m) of electron.	•••••	22	
4.	Describe Stern-Garlach experiment. Show how it verifies the				
	principle features of vector atom model.			28	
5.		an account of Bohr's theory of Hydrogen spectra and			
		ce the expression for energy of an electron. What is the			
	signif	ficance of energy of an electron ?	•••••	43	
	GROUP-B				
6.		iss the quantum theory of Raman effect. What light does			
		ow on the structure of molecule ? What are stokes and			
		tokes line ?	•••••	70	
7.		is the threshold condition of Ruby laser ? Deduce an			
		ssion of flux density in Ruby laser.	•••••	79	
8.		iss the rotational - vibrational spectra of a diatomic			
		cules. Discuss the effect of presence of isotopes on the			
0	spect		•••••	68	
9.		notes on any two of the following :	•••••	84	
	(a)	Optical pumping			
	(b)	Three-level laser system.			
	(c)	Selection rules.			
	(d)	Pure rotational spectra.			
		PHYSICS - 7 (Hons.) (2020)			
	Anou	ver five questions selecting at least two questions			

Answer five questions, selecting at least two questions from each Group, in which Q. No. 1 is compulsory.

Answer any four of the following questions :

 (a) Explain Bohr magneton and Gyromagnetic ratio.
 10

====	======= +90% EXAM. QUESTIONS COMES FROM REKHA EXAMINATION GUIDE ==	======	===
	(b) Distinguish between Normal and Anomalous Zeeman effect.(c) Explain how symmetric and antisymmetric wave functions	•••••	11
	lead to Pauli's exclusion principle.		12
	(d) Explain the phenomenon of population inversion and optical		
	pumping.	•••••	20
	(e) Mention some important application of Laser.	•••••	21
	(f) Distinguish the terms Isotope and Isobar. Group-A	•••••	7
2.	What is meant by thermionic emission? Derive Richardson		
2.	Dushman equation and give its experimental support.		25
3.	Describe the main features of alkali spectra. How they are	•••••	-0
-	explained?		52
4.	What is Paschen Back effect? Give the theory of this effect		
	and illustrate it taking the example of energy level associated		
	with D-transition Sodium.	•••••	36
5.	What do you mean by L. S. and J. J coupling? Explain		
	comparison between them.	•••••	41
	Group – B		
6.	Obtain expression for the rotational energy levels of diatomic		
_	molecule considering it as a rigid rotator.	•••••	62
7.	Give the theory of vibrational spectra of diatomic molecule		
0	and show that the energy levels are equispaced.	•••••	66
8.	What are Einstein's A and B Co-efficients? Establish relation		72
9.	between them.	•••••	72
9.	Describe a He–Ne gas laser. How is population inversion acheived in this type of laser? Mention advantages of gas		
	laser over a solid state laser.		82
		•••••	02
	PHYSICS - 7 (Hons.) (2019)		
1.	Answer any four of the following questions:		
	(a) Discuss, in brief, the different types of molecular spectra.	•••••	15
	(b) State Bohr's postulates of Hydrogen spectra. What are the		
	shortcomings of Bohr's model?	•••••	14
	(c) Give the outlines of vector atom model.	•••••	7
	(d) Discuss spontaneous emission and stimulated emission.	•••••	19
	(e) Explain Stoke and Anti-Stoke's line.	•••••	18
	(f) Mention the different series of alkali spectra. Group-A	•••••	10
2.	Describe, with theory J. J. Thomson's method of measuring		
∠.	the ratio of charge to mass (e/m) of electron.		22
3.	Deduce Pauli exclusion principle and explain its physical	•••••	
5.	significance.		39
	- 0		

======================================			
4.	Describe Stem-Gerlach experiment. Show how it verifies the principal features of vector atom model.		28
5.	Write notes on any two of the following: (a) Normal and anomalous Zeeman effect		
	(b) Bohr magneton		58
	(c) Thermionic emission		55
	(d) Spin-orbit coupling	•••••	58
	Group - B		
6.	Outline the theory of rotation-vibration spectra of diatomic		
	molecules. What will be the effect of the presence of isotopes		
-	on the spectra ?	•••••	68
7.	What is Raman effect? How is Raman effect explained on the basis of quantum theory?		70
8.	What is the threshold condition of Ruby laser ? Deduce an		
	expression of flux density in Ruby laser.		79
9	Write notes on any two of the following :		
	(a) Selection rules	•••••	84
	(b) Infra red spectra		
	(c) Population inversion	•••••	87
	(d) He-Ne laser	•••••	84